Obuda University				Institute of Biomatics and Applied Artificial			
John von Neumann Faculty of Informatics			Intelligence				
Name and code: Auton	noti	ve Cyberseo	curity	NBVAC1EBNE Credits: 3			
Computer Science Engineering BSc				2022/23 year I. semester			
Responsible person of subject: Dr. Bánáti Anna							
Subject lecturers: Dr. Csilling Ákos, Mera Abbassi							
Prerequisites (with code): Informatikai biztonság (NIEIB0HBNE)							
Weekly hours:	Lee	cture: 2	Semir	ar: 0	Lab. hours:	1	Consultation: 0
Way of assessment (exam or midterm grade):	Midterm grade						
Course description:							
<i>Goal</i> : The goal of this course is to introduce students to the basics of cybersecurity within the automotive industry. Students will get an overview about cybersecurity management, ethical hacking, system, software, and hardware security – using practical examples and case-studies from the automotive industry.							
to automotive networks and their security, basics of penetration testing. Application of cryptography within vehicles. Security of low-level languages (C, C++), secure coding. Security of operating systems and firmware. Introduction to hardware-level security, analysis of programmable circuit boards (PCB), reverse engineering, case studies.							

Lecture schedule					
Education week	Topic				
1.	Introduction to automotive cybersecurity, case studies.				
2.	Cybersecurity management. Threat analysis and risk assessment. Post				
	development cybersecurity tasks.				
3.	Introduction to ethical hacking, regulations, approaches. Port scanning,				
	fuzzing, other information gathering techniques. Understanding				
	vulnerabilities, vulnerability scanning.				
4.	Ethical hacking tools. Installation and configuration of Kali Linux. Useful				
	tools in Kali Linux, Metasploit Framework.				
5.	Security of automotive networks I. Internal communication protocols				
	(Ethernet, CAN, LIN, FlexRay), weaknesses and security measures.				
6.	Security of automotive networks II. Wireless technologies (V2X, 5G,				
	GPS, Wi-Fi, Bluetooth), attack surfaces.				
7.	Applied cryptography. Cryptographic primitives, in-vehicle use cases.				
	Restrictions and limitations of the environment. Security trade-offs.				
8.	Security of low-level programming languages, C and C++. Memory layout				
	and architecture. Understanding the basics of buffer overflow, control flow				
	hijacking, remote code execution. Security measures, secure coding.				
9	OS & firmware security. Malware, ransomware, spyware. Protecting				
7.	access with HSM. Malicious flashing and flashware tampering.				
10.	Hardware security I. Analysing a PCB (UART, SPI, I2C, JTAG).				
11.	Hardware security II. Structure of a firmware. Encryption, decryption,				
	hardcoded secrets.				
12.	Hardware security III. Reverse engineering, understanding a binary.				
13.	Midterm				

14. M	14. Midterm (re-take)			
Midterm requirements				
Assessments schedule				
Education week	Торіс			
13.	Theoretical test			
14.	. Theoretical test (first re-take)			
1. exam week	exam week Theoretical test (second re-take)			

Final grade calculation methods

Achieved result	Grade
89%-100%	excellent (5)
76%-88<%	good (4)
63%-75<%	average (3)
51%-62<%	satisfactory (2)
0%-50<%	failed (1)

The final grade will be calculated based on the theoretical midterm test.

Students will be offered optional quizzes and practical homeworks during the semester, by completing these quizzes and homeworks, extra points can be collected to raise the final grade (only applicable if the satisfactory grade is reached by the midterm test).

Presence is required up to 70% both at the lectures and at the lab sessions.

Type of midterm test

Multiple choice theoretical test, in a written form.

Type of replacement

First retake of the midterm on the last week. Second retake of the midterm on the first week of the exam period (only if the student attempted the midterm or the first retake but failed).

References

Obligatory: The slides presented at the lectures.

Recommended: Optional materials and useful WEB links shared at the lectures.