Óbudai Egyetem	
Bánki Donát Gépész és Biztonságtechnikai Mérnöki Kar	
Mérnöki fizika- Engineering Physics BGRFM11NEC	ECTS: 4

Dr. Ruszinkó E.

	Topics
1.	Fluid properties: density and specific weight, viscosity, compressibility, surface tensic capillarity, vapor pressure.
2.	Conservation laws. Properties of an ideal gas. First law of thermodynamics. Thermodynami quantities: enthalpy, ratio of specific heats. Isotropic, isochoric, isobar, and adiabatic process
3.	Fluid statics: a general equation to predict the pressure variation. Pressure in liquid at re Pressures in the atmosphere. Manometers.
4.	Buoyancy: buoyant force, Archimedes' principle, prove the law of buoyancy, hydrometers stability, metacentric height.
5.	Pressure in liquid contained in a linearly accelerating container. Pressure in liquid contained a rotating container.
6.	Fluids in motion: Lagrangian and Eulerian description of motion. Fluids in motion: pathlir streamline, streamtube, streakline, the acceleration of a fluid particle (substantial and mater derivative).
7.	-
8.	Fluids in motion: angular velocity and vorticity. Fluids in motion: the deformation of a partic rate-of-strain tensor.
9.	Classification of fluid flows: one-, two-, and three-dimensional flows. Viscous and invisc flows. Laminar and turbulent flows, Reynolds number. Incompressible and compressible flow
10.	Derive the Bernoulli equation (along a streamline). Total head, static pressure, total pressure
11.	-
12.	Piezometer, Pitot probe, Pitot static probe
13.	Test
14.	Test

Merle C. Potter, David C. Wiggert, Bassem Ramadan, *Mechanics of Fluids*, 2012, Cengage Learning. John R. Howell, Richaed O. Buckius, *Fundamentals of Engineering Thermodynamics*, 1992, McGraw-Hill, Inc.