Subject name and code:	NEPTUN- code:	Hours:	Credit:4
Computer aided design	KEX	lecture+practice+la	
	KEX	boratory	Requirements:
		0+0+2	é
		0+0+8	
Lecturer responsible for	Role:	Prerequisites	
the course:	assistant	(with code): -	
Dr. Antal Ürmös	professor		

Description of the subject matter:

The relationship between CAD/CAM systems, the grouping of these systems - their professional division. Historical development of PCB design. PCB manufacturing process. Presentation of electronic components. Description of the structure of the EAGLE program. Circuit diagram creation program part: grid setting, framing, finding and placing components, drawing wires and buses, changing the properties of circuit elements, error checking, practice. Circuit board design program: panel size setting, wiring, automatic wiring, error checking, drawing copper surfaces, creating production files.

Competences

- Knows the materials used in the field of mechatronics, their production, characteristics and conditions of their use.
- Knows mechatronic, electromechanical, IT, motion control systems, sensors and actuators, as well as their structural units and their basic operation from the viewpoint of a mechanical, electrotechnical, and control engineering perspectives as well.
- He/She knows the basic mechatronic design principles and methods, including the basics of mechanical engineering and fine mechanical constructions, as well as the design of analog and digital circuits.
- He/She is able to interpret and characterize the construction and operation of the structural units and elements of mechatronic systems, the design and connection of the applied system elements from a mechanical, electrotechnical, and control engineering approach
- Able to diagnose malfunctions and select the appropriate troubleshooting procedure from a mechanical, electrical, and control engineering approach.
- It strives to play a connecting and integrating role between the fields of mechanical engineering, IT, electrical engineering and life sciences.
- He/She strives to ensure that his self-education is continuous and consistent with his professional goals in the fields of mechatronics, especially applied mechanical, electrical and IT subfields and other fields related to his work.

References:			
Note:			