Obuda University			Institute of Biomatics				
John von Neumann Faculty of Informatics				1		G 1 ¹ / ₂ 4	
Name and code: Database- and Big Data technologies (NIXAB1EMNE) Credits: 4							
Computer Engineering MSc (English language) 2021/22 year 2. semester							
Subject lecturer: Rita Fleiner, Péter Piros							
Prerequisites (wit code):	h						
Weekly hours:	Lectur	e: 2	Seminar.: 0		Lab. hours: 2	Consultation: 0	
Way of	During the starts						
assessment:	Project work & tests						
Course description:							
Goal: The aim of the lesson is to familiarize students with advanced database management							
concepts and procedure.							
Course description: Data and relational data models, relational algebra, SQL deep dive.							
Logical and physical data model, relations. RDBMS design, dependencies, constraints, normal							
forms, normalization. Triggers and constrains in SQL. Database fundamentals, instance definition, memory structures in db. Transactions. Index types, hashes. SQL tuning. NoSQL databases: types, concepts, architecture, queries. Introduction to Big data, Hadoop framework, Apache Spark.							

Schedule					
Education week	Topic				
1.	Introduction. Knowledge assessment. Relational database systems. Advanced SQL exercises.				
2.	Database architecture, Database instance. Advanced SQL exercises.				
3.	From SQL basics to advanced SQL. Execution plan, database tuning, access paths, indexes, join types, CBO statistics, selectivity, costs, materialization, pipelining. Execution plan analysis.				
4.	From SQL basics to advanced SQL. Execution plan, database tuning, access paths, indexes, join types, CBO statistics, selectivity, costs, materialization, pipelining. Execution plan analysis.				
5.	Test (theory + practise)				
6.	Holiday				
7.	NoSQL databases. Cassandra: concepts, architecture, queries				
8.	NoSQL databases. MongoDB: concepts, architecture, queries				
9.	Basics of Big data. Hadoop framework. Spark in practise.				
10.	Basics of Big data. Apache Spark. Spark in practise.				
11.	Holiday				
12.	NoSQL databases: concepts, types. Key-value stores. Redis: concepts, architecture, queries				
13.	Test (theory + practise)				
14.	Test replacement				

Midterm requirements

There will be two tests during the course:

1. test is on the 5th week. Topic: Relational databases, tuning. (40 points)

2. test is on the 13th week. Topic: Big data and Spark (40 points)

Prerequisite for obtaining a mid-year grade: completion of at least 51% of both tests. Student has to solve a homework project in the topics of Cassandra and MongoDB (20 points) A student who has missed more than 30% of the classes will not receive a mid-year grade.

Final grade calculation methods

The final grade is formed from the project points and the tests points.

Achieved result	Grade		
85%-100%	excellent (5)		
74%-84<%	good (4)		
63%-73<%	average (3)		
51%-62<%	satisfactory (2)		
0%-50%	failed (1)		

Type of requirement					
Homework project and tests					
Type of replacement					
In the 14 th week for all of the tests.					
References					
Obligatory: Lecture notes (download form https://elearning.uni-obuda.hu/)					
Recommended:					
Elmasri, Navathe: Fundamentals of Database Systems					
Other materials: -					