Assessment and subject description

Óbuda Univer	sity								
Kandó Kálmán Faculty of Electrical Engineering					Department of Microelectronics and				
					Technology				
Subject name and code: Digital Technics KEKDT1ABNE Credits: 2									
Full-time									
Course:									
Responsible: Dr. Balázs Kovács, CSC, Tea					Dr. Balázs Kovács, CSC, associate professor				
associate professor staff:						,	ŕ	1	
Prerequisites: Digiális technika I, II									
Contact hours	e: 2	<u> </u>			Lab hours: 0	Tutorial: 0			
per week:				anseassion. v					
Assessment and	d end-of	end-of-term grade							
evaluation:		vii vi viii gi uuv							
Subject description									
Aims:									
This course will give an overview of the basic concepts and applications of digital technics, from Boolean									
algebra to microprocessors. The material covered roughly corresponds to that contained in the introductory									
three-semester course of the Hungarian language B.Sc. programme. However in many respects it will go into									
deeper depths. The lectures will focus more on the general concepts of the subject and less on the practical									
details. In this respect it is presupposed that the students have already acquired a certain level of hands-on									
experience in digital electronics.									
Basic concepts of digital technics. Combinational logic design. Synchronous sequential circuit analysis and									
synthesis. Arithmetic circuits, adders and multipliers. MOS, CMOS and VLSI digital circuits. Microprocessor									
basics.									
Topics to be covered:									
Topics							Week	Lessons	
General introduction. Combinational circuits basic concepts. Review of Boole							1	2	
algebra and of logic functions.								2	
Numerical minimization, Quine-McCluskey algorithm, example. XOR logic.								2.	
Karnaugh map and applications.								_	
Hazards, their elimination. Digital logic building blocks: encoders, decoders,								2	
multiplexers, demultiplexers, comparators, etc.									
Programmable logic PLDs. FGPA basics, architecture, examples.								2	
Combinational logic design: case studies. Model ALU design. Arithmetic circuits,								2	
ripple carrier adder, look-ahead logic, multipliers.									
Sequential circuits, basic concepts. Flip-flops. Analysis and synthesis of sequential circuits. Simple examples.							6	2	
							7		
Analysis and synthesis of sequential circuits. Case studies: Coin operated vending machine control, 4-bit parity indicator, Gray-code counter.							/	2	
Sequential circuits applications examples. Registers, counters, etc. Sequential							8		
arithmetic circuits.								2	
Digital logic circuits I. Basic principles (logic families, inverter). MOS circuits.							9		
CMOS logic, inverter, properties, characteristics, layout. Simple gates, adder, pass								2	
transistor logic.									
Digital logic circuits II. Logic circuit generation and families. Bipolar and TTL.								2	
High speed and advanced logic components. Schottky technology, advanced CMOS.									
BiCMOS circuits.									
Digital logic circuits III. ECL circuits. General comparison and evaluation of									
different logic circuits and technologies. Trends in VLSI and logic circuits								2	
development. Carbon based electronics.									
Semiconductor memories. Advanced memory concepts and technologies							12	2	
Microprocessors, review of basic concepts and properties.							13	2	

End-of-term test.

14

Assessment and evaluation

Requirements of the signature:

The attendance of lectures is strongly recommended.

Home assignments should be prepared according to the deadlines set.

Type of exam:

Final grade is based on two home assignments and an end-of-term test.

Evaluation of the exam:

1 st home assignment: combinational and sequential logic problem solving (30 % in the final grade).

2 nd home assignment: sequential logic design or essay on s specific subject (25 % in the final grade).

End-of-term test paper (45 % in the final grade).

Pass level: 55 %

Suggested material

Arató Péter: Logikai rendszerek tervezése, Tankönyvkiadó, Budapest, 1990, Műegyetemi Kiadó 2004

Gál Tibor: Digitális rendszerek I. és II. Műegyetemi Kiadó, 2003, 51429, 514291

Benesóczky Zoltán: Digitális tervezés funkcionális elemekkel és mikroprocesszorokkal, Műegyetemi Kiadó, 2002, 55033

Mojzes Imre (szerk.) Mikroelektronika és elektronikai technológia, Műszaki Könyvkiadó, Budapest, 1995 Balázs Kovács: Digital technics I (course materials for 1 st year English language course), available in the University E-learning (Moodle) system.