Name:		NEPTUN-code:	Number of periods/week:
Information- and Coding Theory		NMXIK1EMNE	full-time: $2 lec + 0 sem + 0 lab$
Credit: 5		Prerequisite:	
Requirement: mid-term mark		-	
Responsible:	Position:	Faculty and Institute name:	
Aurél GALÁNTAI, Ph.D.	professor,	John von Neumann Faculty of Informatics	
	habil.	Institute of Applied Mathematics	
Way of assessment:			
written exam			

Competences

Course description:

Basics of information theory, entropy, variable length source coding, Huffman code. The communication channel: conditional entropy, mutual information, channels and their capacities, decoding, ideal observer. Basics of error-correcting codes: Galois fields, vector spaces. Linear codes: Hamming code, orthogonal and first order Reed-Müller code. Cyclic codes. Data compression. Theoretical limits of compression. Arithmetic coding. Important compression techniques: Lempel-Ziv algorithms, the Burrows-Wheeler method. Elements of cryptology. Classical encryptions. Model of algorithmic attacks and cryptanalysis of classical encryptions. DES and AES. Public key encoding: basics and the RSA algorithm.

Literature

S. Fegyverneki: Information Theory, e-notes, Miskolci Egyetem, 2006 (in Hungarian, electronic notes) L. Győrfi, S. Győri, I. Vajda: Information- and Coding Theory, Typotex, Budapest, 2002 (in Hungarian)