Name of the subject: Signal processing I. KMXJK5ABNE			Faculty: Kandó Kálmán Faculty of Electricity EKRI-MAT				
Credits: 5	-	Prerequisite:					
Requrement: vizsga		KMEMT6ABNE					
XX7 1-1 1		er: Zsolt Markella	T - 1				
Weekly hours:	Lecture: 2		Laboratory: 2				
			eterministic signals in measure the signals. Introduction to the				
Lecture thematics:					hour		
Determination of deterministic and stochastic signals. Classification of deterministic signals.					2		
Time-domain and amplitude-domain characteristics of periodic signals, interpretation and measurement of mean characteristics.				2.	2		
Time-domain description of signal transmission in linear networks, the convolution operation. Synthesis of complex signals from elementary signals (power function, jump signal, Dirac pulse).				3.	2		
Classical and metrological form of the Fourier series of periodic signals. Representation, calculation, measurement, applicability.					2		
Complex Fourier series of periodic signals (interpretation, calculation).					2		
Derivation, interpretation, calculation of the Fourier transform of aperiodic signals.					2		
Applications of frequency domain characteristics of signals: signal power, signal energy, Parseval's theorems. Investigation of signal transmission in the frequency domain.				7.	2		
Frequency dependence of the gain and phase shift of an ideal delay. Group delay time characteristics.					2		
Purpose and types of sampling: mathematical and physical, periodic, random, variable interval. Fourier spectrum evolution for periodic mathematical sampling. Theorems of mathematical sampling.					2		
Signal recovery after regular sampling. Cases of irregular sampling: undersampling and oversampling. The anti-overlap filter. Equivalent time sampling.					2		
Post-sampling signal recovery with real filter and sampler-holder circuit, interpolation (zero-order, first-order, higher-order). The relation between finite- time sampling, sampling and modulation. Effect of windowing functions.					2		
The essence of discrete Fourier transform, algorithms for fast Fourier transform, applications. Advantages and potential for error in digital processing of analogue signals.					2		
Definition of digital signal, basic types, digital frequency. Elements of digital filters. Construction of FIR filters, characteristics of their frequency dependence.					2		
Construction of IIR filters, definition of frequency dependence. Implementation methods and applications of digital filters. Vibration analysis of complex mechanical systems using the kepstrum method					2		

Lab. practice thematics	week	hour
Analogue and mixed-signal signal processing circuits 1		3
Analogue and mixed-signal signal processing circuits 2		3

FPGA programming and simulation 1		3
FPGA programming and simulation 2		3
Using a graphical programming language (LabVIEW).		3
Image processing		3
Digital signal processing algorithms (FIR and IIR filters, FFT).		3
Data processing with Excel.		3
Data processing with Matlab.		3

Subject requirements:

To pass the exam, you must attend the lectures regularly and complete the required measurement exercises. The examination is oral.

The literature

Recommended literature:

- Dr. Nagy Vince: Rendszertechnika (kézirat) Széchenyi István Egyetem, 2001.
- Ferenczy Ödön: Hírközléselmélet (Műszaki Könyvkiadó, 1976.)
- Dr. Schnell László szerk: Jelek és rendszerek méréstechnikája (Műszaki Könyvkiadó, 1985.)
- Dr. Fodor György: Lineáris rendszerek analízise (Műszaki Könyvkiadó, 1974.)
- Dr. Simonyi Ernő: Digitális szűrők (Műszaki Könyvkiadó, 1984)