Óbuda University John von Neumann Faculty of Informatics	Institute of Applied Mathematics	
Name and code: Mathematics I. - Calculus I. NMXAN1EBNE Computer Science Engineering BSc	Full time course 2022/2023. year I. semester	

Education week	
Lecture schedule	
1.	The algebraic form of complex numbers. Modulus and conjugate. Visualising complex numbers in Argand diagram. Operations in algebraic form (addition, multiplying by a constant, multiplication, division). The trigonometric and expo- nential forms of complex numbers. Conversion from one form to another. Ope- rations in trigonometric and exponential forms (multiplication, division, raising to powers).
2.	The n-th roots of a complex number. Equations with complex unknowns. Poly- nomials, long division. The fundamental theorem of algebra. Factorised form of polynomials.
3.	Sequences of numbers. Monotonic and bounded sequences. Convergence and limit of sequences.
4.	Sandwich theorem. Definition of number e. The Euler sequence, geometric se- quences. The sum of geometric series. Calculation of limits. Limit points.
5.	Elementary functions and their properties. Operations of functions. Monotonic and bounded functions. Extrema. Convexity and inflection points. Even, odd and periodic functions. Composition of functions. Inverse functions. Linear transfor- mations of functions.
6.	Limits of functions at finite points. One-sided limits. Limits at the infinities. In- finity as a limit. Asymptotes. Continuity of functions. Operations and continuity. Theorems of continuous functions.

Lecture schedule	
Education week	Topic
7.	Some important limits of trigonometric, exponential an logarithmic functions. Discontinuities. Differentiability. Derivative of functions. Calculating derivatives using its definition.
8.	Derivative functions. Derivatives of elementary functions. Equations of the tangent line and the normal line. Linear approximations of functions.
9.	Operations and derivatives. (Sum rule, difference rule, product rule, quotient rule, chain rule.) Derivative of the inverse function. Logarithmic differentiation. Higher derivatives. Derivatives of the inverses of trigonometric functions.
10.	Applications of differential calculus: analysing functions, calculating extrema, finding inflection points. L'Hôpital's rule. Numeric solutions of equations. (Newton method.)
11.	Antiderivatives and indefinite integrals. Properties of indefinite integrals. Integration by parts. Integration with substitution.
12.	Definite integrals and their properties. Fundamental theorem of integral calculus. Numeric integrations.
13.	Applications of integrals: calculating areas, arc length, volumes and surface of solids of revolutions. Improper integrals.
14.	Partial fraction method. Integrating rational functions.
Midterm tests	
Education week	Midterm tests
6.	Complex numbers, sequences, functions
13.	Functions, differential and integral calculus
14.	Retake
Midterm requirements	
Signature: It can be achieved $50-50$ points at most on midterm test. (100 points altogether) Students can get their signature only if all the following conditions are fulfilled: They attend the lessons regularly (see study-and-examination-regulations-of-obuda-university.pdf). They don't fail to hand in both midterm tests. The results of the midterm test are at least 30% (15 points) in both cases. Students achieve at least 50% (50 points) on the two tests altogether. The test are written in a classroom under the supervision of the teachers. They contain a theoretic part and a practical. Without a signature students can not register for the exam.	

Retake
If a student has less then 50% of the points on the midterm tests or failed to hand in one of them, or has less than 30% of the point for one of them, then they can retake the missing midterm test or the one with less achieved points on the 14th week. In the latter case the newly achieved points will replace the points of the original test. Students can get their signature if they have at least 50 points altogether and at least 15 points for both midterm tests separately after the retake. Students absent from more then 30\% of the lessons, or failed to hand in both of their midterm tests, will be rejected. In this case, they can not take their exam in this semester. Students who have no signature at the and of the 14th week, but are not rejected, may take the signature retake exam. On the signature retake exam they have to answer questions from the material of the whole semester. To get a signature, students have to acheve at least 60\% of the point on the signature retake exam. In case they have less than 60\%, but at least 55\%, then they can take a short oral test as well to prove themselves.

